What is Gait Recognition? Gait recognition is the process of identifying and verifying individuals based on their walking patterns.
Papers and Code
Dec 05, 2024
Abstract:Gait recognition is a significant biometric technique for person identification, particularly in scenarios where other physiological biometrics are impractical or ineffective. In this paper, we address the challenges associated with gait recognition and present a novel approach to improve its accuracy and reliability. The proposed method leverages advanced techniques, including sequential gait landmarks obtained through the Mediapipe pose estimation model, Procrustes analysis for alignment, and a Siamese biGRU-dualStack Neural Network architecture for capturing temporal dependencies. Extensive experiments were conducted on large-scale cross-view datasets to demonstrate the effectiveness of the approach, achieving high recognition accuracy compared to other models. The model demonstrated accuracies of 95.7%, 94.44%, 87.71%, and 86.6% on CASIA-B, SZU RGB-D, OU-MVLP, and Gait3D datasets respectively. The results highlight the potential applications of the proposed method in various practical domains, indicating its significant contribution to the field of gait recognition.
* Neurocomputing 605 (2024): 128313
Via
Nov 29, 2024
Abstract:We introduce a novel state-space model (SSM)-based framework for skeleton-based human action recognition, with an anatomically-guided architecture that improves state-of-the-art performance in both clinical diagnostics and general action recognition tasks. Our approach decomposes skeletal motion analysis into spatial, temporal, and spatio-temporal streams, using channel partitioning to capture distinct movement characteristics efficiently. By implementing a structured, multi-directional scanning strategy within SSMs, our model captures local joint interactions and global motion patterns across multiple anatomical body parts. This anatomically-aware decomposition enhances the ability to identify subtle motion patterns critical in medical diagnosis, such as gait anomalies associated with neurological conditions. On public action recognition benchmarks, i.e., NTU RGB+D, NTU RGB+D 120, and NW-UCLA, our model outperforms current state-of-the-art methods, achieving accuracy improvements up to $3.2\%$ with lower computational complexity than previous leading transformer-based models. We also introduce a novel medical dataset for motion-based patient neurological disorder analysis to validate our method's potential in automated disease diagnosis.
Via
Nov 16, 2024
Abstract:Existing studies for gait recognition primarily utilized sequences of either binary silhouette or human parsing to encode the shapes and dynamics of persons during walking. Silhouettes exhibit accurate segmentation quality and robustness to environmental variations, but their low information entropy may result in sub-optimal performance. In contrast, human parsing provides fine-grained part segmentation with higher information entropy, but the segmentation quality may deteriorate due to the complex environments. To discover the advantages of silhouette and parsing and overcome their limitations, this paper proposes a novel cross-granularity alignment gait recognition method, named XGait, to unleash the power of gait representations of different granularity. To achieve this goal, the XGait first contains two branches of backbone encoders to map the silhouette sequences and the parsing sequences into two latent spaces, respectively. Moreover, to explore the complementary knowledge across the features of two representations, we design the Global Cross-granularity Module (GCM) and the Part Cross-granularity Module (PCM) after the two encoders. In particular, the GCM aims to enhance the quality of parsing features by leveraging global features from silhouettes, while the PCM aligns the dynamics of human parts between silhouette and parsing features using the high information entropy in parsing sequences. In addition, to effectively guide the alignment of two representations with different granularity at the part level, an elaborate-designed learnable division mechanism is proposed for the parsing features. Comprehensive experiments on two large-scale gait datasets not only show the superior performance of XGait with the Rank-1 accuracy of 80.5% on Gait3D and 88.3% CCPG but also reflect the robustness of the learned features even under challenging conditions like occlusions and cloth changes.
* 12 pages, 9 figures; Accepted by ACM MM 2024
Via
Oct 11, 2024
Abstract:Gait recognition is a remote biometric technology that utilizes the dynamic characteristics of human movement to identify individuals even under various extreme lighting conditions. Due to the limitation in spatial perception capability inherent in 2D gait representations, LiDAR can directly capture 3D gait features and represent them as point clouds, reducing environmental and lighting interference in recognition while significantly advancing privacy protection. For complex 3D representations, shallow networks fail to achieve accurate recognition, making vision Transformers the foremost prevalent method. However, the prevalence of dumb patches has limited the widespread use of Transformer architecture in gait recognition. This paper proposes a method named HorGait, which utilizes a hybrid model with a Transformer architecture for gait recognition on the planar projection of 3D point clouds from LiDAR. Specifically, it employs a hybrid model structure called LHM Block to achieve input adaptation, long-range, and high-order spatial interaction of the Transformer architecture. Additionally, it uses large convolutional kernel CNNs to segment the input representation, replacing attention windows to reduce dumb patches. We conducted extensive experiments, and the results show that HorGait achieves state-of-the-art performance among Transformer architecture methods on the SUSTech1K dataset, verifying that the hybrid model can complete the full Transformer process and perform better in point cloud planar projection. The outstanding performance of HorGait offers new insights for the future application of the Transformer architecture in gait recognition.
Via
Nov 04, 2024
Abstract:Human motion analysis offers significant potential for healthcare monitoring and early detection of diseases. The advent of radar-based sensing systems has captured the spotlight for they are able to operate without physical contact and they can integrate with pre-existing Wi-Fi networks. They are also seen as less privacy-invasive compared to camera-based systems. However, recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns. This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems and proposing a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm. We investigate Black-box Membership Inference Attack (MIA) Models in HAR settings across various levels of attacker-accessible information. We extensively evaluated the effectiveness of the proposed IDG-DP method by designing a CNN-based HAR model and rigorously assessing its resilience against MIAs. Experimental results demonstrate the potential of IDG-DP in mitigating privacy attacks while maintaining utility across all settings, particularly excelling against label-only and shadow model black-box MIA attacks. This work represents a crucial step towards balancing the need for effective radar-based HAR with robust privacy protection in healthcare environments.
Via
Oct 30, 2024
Abstract:Video-based gait analysis can be defined as the task of diagnosing pathologies, such as ataxia, using videos of patients walking in front of a camera. This paper presents a graph convolution network called AtGCN for detecting ataxic gait and identifying its severity using 2D videos. The problem is especially challenging as the deviation of an ataxic gait from a healthy gait is very subtle. The datasets for ataxic gait detection are also quite small, with the largest dataset having only 149 videos. The paper addresses the first problem using special spatiotemporal graph convolution that successfully captures important gait-related features. To handle the small dataset size, a deep spatiotemporal graph convolution network pre-trained on an action recognition dataset is systematically truncated and then fine-tuned on the ataxia dataset to obtain the AtGCN model. The paper also presents an augmentation strategy that segments a video sequence into multiple gait cycles. The proposed AtGCN model then operates on a graph of body part locations belonging to a single gait cycle. The evaluation results support the strength of the proposed AtGCN model, as it outperforms the state-of-the-art in detection and severity prediction with an accuracy of 93.46% and a MAE of 0.4169, respectively.
Via
Oct 11, 2024
Abstract:Recently, 3D LiDAR has emerged as a promising technique in the field of gait-based person identification, serving as an alternative to traditional RGB cameras, due to its robustness under varying lighting conditions and its ability to capture 3D geometric information. However, long capture distances or the use of low-cost LiDAR sensors often result in sparse human point clouds, leading to a decline in identification performance. To address these challenges, we propose a sparse-to-dense upsampling model for pedestrian point clouds in LiDAR-based gait recognition, named LidarGSU, which is designed to improve the generalization capability of existing identification models. Our method utilizes diffusion probabilistic models (DPMs), which have shown high fidelity in generative tasks such as image completion. In this work, we leverage DPMs on sparse sequential pedestrian point clouds as conditional masks in a video-to-video translation approach, applied in an inpainting manner. We conducted extensive experiments on the SUSTeck1K dataset to evaluate the generative quality and recognition performance of the proposed method. Furthermore, we demonstrate the applicability of our upsampling model using a real-world dataset, captured with a low-resolution sensor across varying measurement distances.
Via
Sep 18, 2024
Abstract:Gait recognition is a rapidly progressing technique for the remote identification of individuals. Prior research predominantly employing 2D sensors to gather gait data has achieved notable advancements; nonetheless, they have unavoidably neglected the influence of 3D dynamic characteristics on recognition. Gait recognition utilizing LiDAR 3D point clouds not only directly captures 3D spatial features but also diminishes the impact of lighting conditions while ensuring privacy protection.The essence of the problem lies in how to effectively extract discriminative 3D dynamic representation from point clouds.In this paper, we proposes a method named SpheriGait for extracting and enhancing dynamic features from point clouds for Lidar-based gait recognition. Specifically, it substitutes the conventional point cloud plane projection method with spherical projection to augment the perception of dynamic feature.Additionally, a network block named DAM-L is proposed to extract gait cues from the projected point cloud data. We conducted extensive experiments and the results demonstrated the SpheriGait achieved state-of-the-art performance on the SUSTech1K dataset, and verified that the spherical projection method can serve as a universal data preprocessing technique to enhance the performance of other LiDAR-based gait recognition methods, exhibiting exceptional flexibility and practicality.
Via
Aug 22, 2024
Abstract:Current gait recognition research predominantly focuses on extracting appearance features effectively, but the performance is severely compromised by the vulnerability of silhouettes under unconstrained scenes. Consequently, numerous studies have explored how to harness information from various models, particularly by sufficiently utilizing the intrinsic information of skeleton sequences. While these model-based methods have achieved significant performance, there is still a huge gap compared to appearance-based methods, which implies the potential value of bridging silhouettes and skeletons. In this work, we make the first attempt to reconstruct dense body shapes from discrete skeleton distributions via the diffusion model, demonstrating a new approach that connects cross-modal features rather than focusing solely on intrinsic features to improve model-based methods. To realize this idea, we propose a novel gait diffusion model named DiffGait, which has been designed with four specific adaptations suitable for gait recognition. Furthermore, to effectively utilize the reconstructed silhouettes and skeletons, we introduce Perception Gait Integration (PGI) to integrate different gait features through a two-stage process. Incorporating those modifications leads to an efficient model-based gait recognition framework called ZipGait. Through extensive experiments on four public benchmarks, ZipGait demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both cross-domain and intra-domain settings, while achieving significant plug-and-play performance improvements.
Via
Aug 13, 2024
Abstract:Gait recognition has attracted increasing attention from academia and industry as a human recognition technology from a distance in non-intrusive ways without requiring cooperation. Although advanced methods have achieved impressive success in lab scenarios, most of them perform poorly in the wild. Recently, some Convolution Neural Networks (ConvNets) based methods have been proposed to address the issue of gait recognition in the wild. However, the temporal receptive field obtained by convolution operations is limited for long gait sequences. If directly replacing convolution blocks with visual transformer blocks, the model may not enhance a local temporal receptive field, which is important for covering a complete gait cycle. To address this issue, we design a Global-Local Temporal Receptive Field Network (GLGait). GLGait employs a Global-Local Temporal Module (GLTM) to establish a global-local temporal receptive field, which mainly consists of a Pseudo Global Temporal Self-Attention (PGTA) and a temporal convolution operation. Specifically, PGTA is used to obtain a pseudo global temporal receptive field with less memory and computation complexity compared with a multi-head self-attention (MHSA). The temporal convolution operation is used to enhance the local temporal receptive field. Besides, it can also aggregate pseudo global temporal receptive field to a true holistic temporal receptive field. Furthermore, we also propose a Center-Augmented Triplet Loss (CTL) in GLGait to reduce the intra-class distance and expand the positive samples in the training stage. Extensive experiments show that our method obtains state-of-the-art results on in-the-wild datasets, $i.e.$, Gait3D and GREW. The code is available at https://github.com/bgdpgz/GLGait.
* Accepted by ACM MM2024
Via